Percepción de las competencias científicas en estudiantes universitarios de nivel superior del área de ciencias de la salud

Salvador Ruiz Bernés, Alejandro Ruiz Bernés, Aurelio Flores García, Verónica Benites Guerrero

Resumen


Un objetivo principal de la educación es promover la alfabetización científica, cuyos paradigmas de investigación han cambiado con el tiempo. El objetivo del trabajo fue identificar la percepción de las competencias científicas en estudiantes de nivel superior del Área de Ciencias de la Salud. Se aplicó un instrumento con 69 reactivos distribuidos en 6 secciones que caracterizan la competencia científica. Los estudiantes participaron por invitación conformando una muestra no probabilística de voluntarios homogénea de 388 participantes. Los resultados se presentaron mediante estadística descriptiva (frecuencias y proporciones). Se concluye que existe oportunidad para incluir nuevas herramientas tecnológicas e integrar en los métodos pedagógicos nuevas estrategias didácticas, así como también una mayor participación de grupos interdisciplinarios experimentados para el reforzamiento de la competencia científica.


Texto completo:

PDF XML

Referencias


Bauer, M., Allum, N. & Miller, S. (2007). What can we learn from 25 years of PUS survey research? Liberating and expanding the agenda. Public Understanding of Science, 16(1), 79-95.

Boucouvalas, M. & Lawrence, R. (2010). Adult learning. United States of America: SAGE Publications.

Brookfield, S. (1993). Self-directed learning, political clarity, and the critical practice of adult education. Adult education quarterly, 43(4), 227-242.

Bybee, R. (2008). Scientific literacy, environmental issues, and PISA 2006: The 2008 Paul F-Brandwein lecture. Journal of Science Education; Technology, 17(6), 566-585.

Cross, S. (2009). Adult teaching and learning: Developing your practice: McGraw-Hill Education (UK).

Eneau, J. (2008). From autonomy to reciprocity, or vice versa? French personalism's contribution to a new perspective on self-directed learning. Adult education quarterly, 58(3), 229-248.

Falk, J. & Needham, M. (2013). Factors contributing to adult knowledge of science and technology. Journal of Research in Science Teaching, 50(4), 431-452. doi:10.1002/tea.21080

Falk, J., Storksdieck, M. & Dierking, L. (2007). Investigating public science interest and understanding: Evidence for the importance of free-choice learning. Public Understanding of Science, 16(4), 455-469.

Fenichel, M., Schweingruber, H. & National Research Council. (2010). Surrounded by science: Learning science in informal environments: National Academies Press.

Hernández Sampieri, R., Fernández Collado, C. & Baptista Lucio, P. (2014). Metodología de la investigación (6ta. ed.): McGraw-Hill México.

Jack, B., Lin, H. & Yore, L. (2014). The synergistic effect of affective factors on student learning outcomes. Journal of Research in Science Teaching, 51(8), 1084-1101. doi:10.1002/tea.21153

Jameson, M. & Fusco, B. (2014). Math anxiety, math self-concept, and math self-efficacy in adult learners compared to traditional undergraduate students. Adult education quarterly, 64(4), 306-322. doi:10.1177/0741713614541461

Lin, H. (2010). A survey on civic scientific literacy (NSC 98-2511-S-110-005). Center for General Education, National Sun Yat-sen University, Kaohsiung City.

Lin, H., Hong, Z. & Huang, T. (2012). The role of emotional factors in building public scientific literacy and engagement with science. International Journal of Science Education, 34(1), 25-42. doi:10.1080/09500693.2010.551430

Lin, H., Lawrenz, F., Lin, S. & Hong, Z. (2013). Relationships among affective factors and preferred engagement in science-related activities. Public Understanding of Science, 22(8), 941-954. doi:10.1177/0963662511429412

Marsick, V. & Watkins, K. (2001). Informal and incidental learning. New directions for adult; continuing education, 2001(89), 25-34.

Merriam, S., Caffarella, R. & Baumgartner, L. (2012). Learning in adulthood: A comprehensive guide (3rd ed.). United States of America: John Wiley & Sons.

Miller, J. (2004). Public understanding of, and attitudes toward, scientific research: What we know and what we need to know. Public Understanding of Science, 13(3), 273-294.

OCDE. (2015a). PISA 2015 draft science framework. In Organisation for Economic Co-operation Development (Ed.): Paris.

OCDE. (2015b). Programa para la Evaluación Internacional de Alumnos (PISA). In: Organización para la Cooperación y el Desarrollo Económico.

Sarkar, M. & Corrigan, D. (2014). Bangladeshi science teachers’perspectives of scientific literacy and teaching practices. International Journal of Science Mathematics Education, 12(5), 1117-1141. doi:10.1007/s10763-013-9450-8

Schleicher, A., Zimmer, K., Evans, J. & Clements, N. (2009). PISA 2009 Assessment Framework: Key Competencies in Reading, Mathematics and Science.

Shepard, R., Fasko, D. & Osborne, F. (1999). Intrapersonal intelligence: Affective factors in thinking. Education, 119(4), 633.

Shuck, B., Albornoz, C. & Winberg, M. (2013). Emotions and their effect on adult learning: A constructivist perspective. In Proceedings of the Sixth Annual College of Education Research Conference: Urban and International Education Section (pp. 108-113). Miami: Florida International University: S. M. Nielsen & M. S. Plakhotnik (Eds.).

Sjøberg, S. (2015). PISA and Global Educational Governance-A Critique of the Project, its Uses and Implications. Eurasia Journal of Mathematics, Science, Technology and Education, 11(1). doi:10.12973/eurasia.2015.1310a

Stine-Morrow, E. A. & Parisi, J. (2010). The adult development of cognition and learning. In International Encyclopedia of Education (pp. 225-230): Elsevier Ltd.

Woods-McConney, A., Oliver, M., McConney, A., Schibeci, R. & Maor, D. (2014). Science engagement and literacy: A retrospective analysis for students in Canada and Australia. International Journal of Science Education, 36(10), 1588-1608. doi:10.1080/09500693.2013.871658


Enlaces refback

  • No hay ningún enlace refback.